

Microsoft One-Step Diffusion-Based Image Compression with Semantic Distillation

Naifu Xue¹, Zhaoyang Jia², Jiahao Li³, Bin Li³, Yuan Zhang¹, Yan Lu³

¹Communication University of China, ²University of Science and Technology of China, ³Microsoft Research Asia

Introduction

Motivation:

Weakness of existing image codecs at low bitrates.

- Traditional / MSE-optimized codecs produce blurry textures.
- VAE-based generative codecs improve sharpness yet often introduce artifacts.
- Diffusion-based generative codecs raise perceptual realism, but they:
- (i) occasionally generate content that deviates from the original;
- (ii) Iterative sampling process leads to substantial computational overhead.

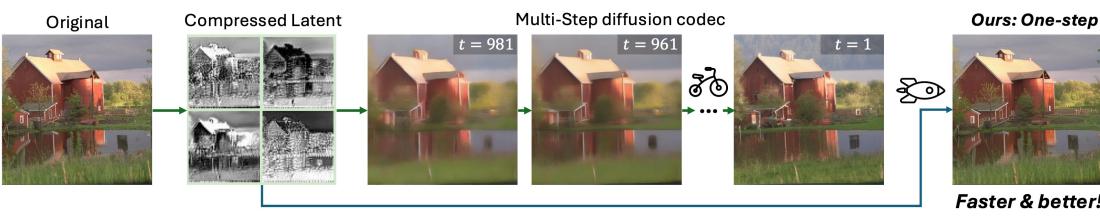


Figure 1: Multi-step diffusion v.s. one-step diffusion

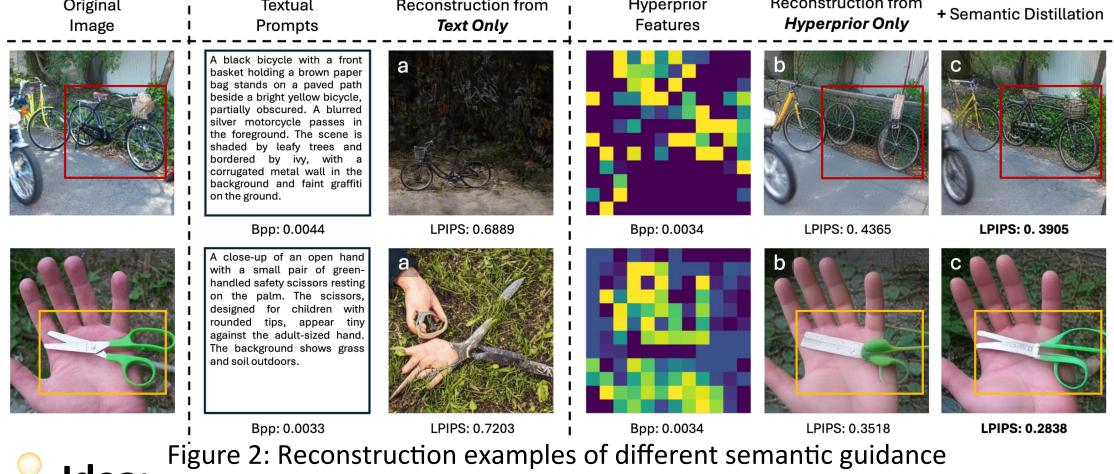
⊸ Observation:

Multi-step sampling may not necessary for compression.

- In diffusion models, early steps generate coarse structure, while later steps progressively refine high-frequency details.
- An image codec already transmits most low-frequency content through its latent representation, the decoder only need to synthesize fine details.
- Besides, multi-step diffusion prohibits direct pixel-domain supervision.

Textual conditioning in diffusion models is suboptimal for compression.

- Caption generation depends on heavy vision—language models.
- Text prompts are coarse and non-spatial, unable to describe fine local details.



Idea:

A carefully designed one-step diffusion is sufficient for image coding.

In this work, we:

- Use **one-step diffusion** as the generator in the image codec.
- Replace textual guidance with hyperprior-based conditioning.
- Enhance the guidance accuracy of the hyperprior through semantic distillation.
- Adopt **pixel-latent hybrid supervision** to improve reconstruction quality.
- Finally achieving SOTA RD performance with fast decoding!

Method

Our Solution: OneDC (One-step Diffusion based Image Compression) Encoder side **One-Step Diffusion**

Figure 3: Framework of OneDC

X Key components:

- Latent compression module. A learned compression framework, encoding spatial features and hyperprior side information for compact transmission.
- One-step diffusion generator. A diffusion U-Net that reconstructs images from compressed latents in a single denoising step.
- Hyperprior-based conditioning. The hyperprior feature replaces text embeddings to provide spatial semantic guidance via cross-attention layers in the U-Net.
- As illustrated in Fig.2, the hyperprior provide more accurate description than text.

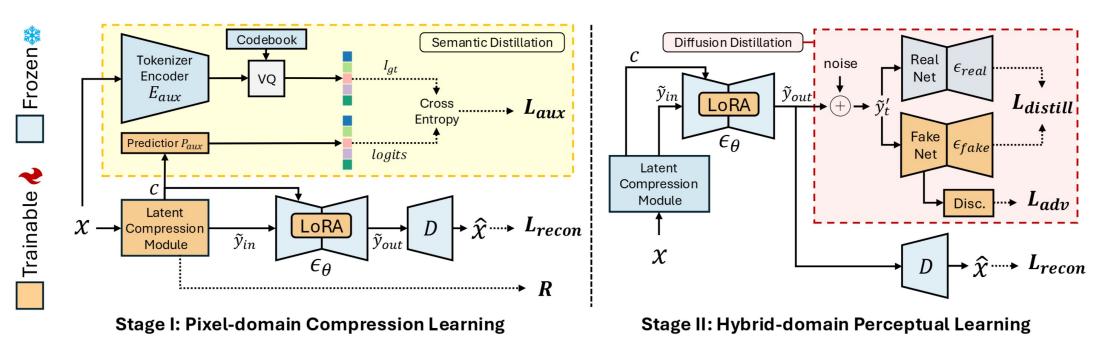


Figure 4: Training pipeline of OneDC

Training strategies:

Two-stage optimization.

- Stage I: Train the compression module and adapt the U-Net for the one-step image reconstruction task.
- **Stage II:** Fine-tune the one-step diffusion U-Net to enhance perceptual realism.

Semantic distillation of hyperprior (Stage I).

- Distill semantic priors from a pretrained VQ-tokenizer into the hyperprior codec, enriching its representation and guidance accuracy.
 - As shown in Fig.2, hyperprior + semantic distillation further improves fidelity.

$$L_{stageI} = L_{recon} + \lambda R + \alpha L_{aux}, \quad \text{where } L_{recon} = L_1(x, \hat{x}) + L_{perceptual}(x, \hat{x})$$

$$I_{gt} = VQ(E_{aux}(x)), \quad L_{aux} = CE(I_{gt}, P_{aux}(c))$$

Hybrid-domain supervision of one-step diffusion (Stage II).

- Perform diffusion distillation in the latent domain, transferring generative priors from a multi-step teacher to the one-step student.
- Combine with pixel-domain supervision to maintain reconstruction fidelity.

$$L_{stageII} = L_{distill} + \beta L_{recon} + \gamma L_{adv}, \text{ where:}$$

$$L_{distill} = \mathbb{E}_{t,\tilde{y}'_t} [\epsilon_{fake}(\tilde{y}'_t,t) - \epsilon_{real}(\tilde{y}'_t,t)], L_{adv} = \mathbb{E}_{t,\tilde{y}'_t} [-Disc(\epsilon_{fake}(\tilde{y}'_t,t),t)]$$

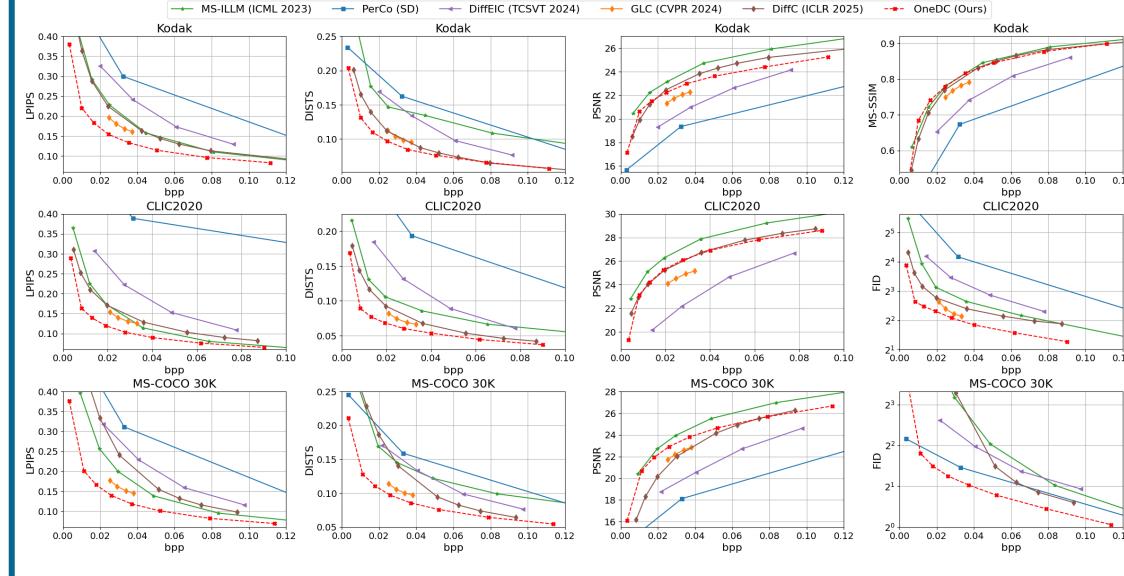
Experiment



DiffEIC

Quantitative Evaluation: OneDC achieves SOTA RD performance.

PerCo (SD



Ablation studies validate the effectiveness of the hyperprior guidance and Hybrid-domain training.

Table 1: Ablation studies with BD-Rate (%) \downarrow

Settings	CLIC2 DISTS	
Semantic guidance		
No guidance	44.0	45
Text guidance	24.2	36
Hyperprior guidance	20.7	24
Hyperprior + Sem. Distil.→ Ours	0.00	0.0

Latent-domain only

Hybrid-domain \rightarrow **Ours**

Settings	CLIC2020		
	DISTS	FID	
Semantic guidance			
No guidance	44.0	45.1	
Text guidance	24.2	36.3	
Hyperprior guidance	20.7	24.3	
Hyperprior + Sem. Distil. \rightarrow Ours	0.00	0.00	
Loss variation	_		
Pixel-domain only	11.4	51.8	

60.7 37.1

 $0.00 \quad 0.00$

Complexity analysis validate OneDC is much faster than all multi-step diffusion codecs while preserving high quality.

Table 2: Comparison of coding time and BD-Rate (%)

able 2. Comparison of coding time and bb-Rate (70) \$.									
Methods	Times (s)		MS-COCO 30K						
	Enc.	Dec.	LPIPS	DISTS	FID				
VAE-based									
MS-ILLM	0.14	0.17	138.3	253.0	478.4				
Multi-step diffusion									
DiffEIC	0.32	12.4	305.0	239.1	341.0				
PerCo (SD)	0.58	8.80	538.8	345.8	59.6				
DiffC	3.9~15.6	6.9~10.8	234.0	196.1	690.9				
One-step diffusion									
$OneDC \to \mathbf{Ours}$	0.15	0.34	0.00	0.00	0.00				