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Introduction

AV VA

.+ Motivation:

Weakness of existing image codecs at low bitrates.
e Traditional / MSE-optimized codecs produce blurry textures.
* VAE-based generative codecs improve sharpness yet often introduce artifacts.
* Diffusion-based generative codecs raise perceptual realism, but they:
(i) occasionally generate content that deviates from the original;

(i) Iterative sampling process leads to substantial computational overhead.
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Figure 1: Multi-step diffusion v.s. one-step diffusion

(4 Observation:

Multi-step sampling may not necessary for compression.

* In diffusion models, early steps generate coarse structure, while later steps
progressively refine high-frequency details.

* An image codec already transmits most low-frequency content through its latent
representation, the decoder only need to synthesize fine details.

* Besides, multi-step diffusion prohibits direct pixel-domain supervision.

Textual conditioning in diffusion models is suboptimal for compression.
* Caption generation depends on heavy vision—language models.
* Text prompts are coarse and non-spatial, unable to describe fine local details.
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A black bicycle with a front
basket holding a brown paper
bag stands on a paved path
beside a bright yellow bicycle,
partially obscured. A blurred
silver motorcycle passes in
the foreground. The scene is
shaded by leafy trees and
bordered by vy, with a
corrugated metal wall in the
background and faint graffiti
on the ground.

Bpp: 0.0044

A close-up of an open hand
with a small pair of green-
handled safety scissors resting

on the palm. The scissors,
designed for children with
rounded tips, appear tiny
against the adult-sized hand.
The background shows grass
and soil outdoors.
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1d Figure 2: Reconstruction examples of different semantic guidance
v ea.

A carefully designed one-step diffusion is sufficient for image coding.

Bpp:0.0033 LPIPS: 0.3518 LPIPS: 0.2838

In this work, we:

 Use one-step diffusion as the generator in the image codec.

* Replace textual guidance with hyperprior-based conditioning.

 Enhance the guidance accuracy of the hyperprior through semantic distillation.
 Adopt pixel-latent hybrid supervision to improve reconstruction quality.

~ Finally achieving SOTA RD performance with fast decoding!

Method

® Qur Solution: OneDC (One-step Diffusion based Image Compression)

& Decoder side

y
X — Ya * Q "H—>AD

FSQ—*I—P.—ZA a 1 32— SeT —
X Key components:

Figure 3: Framework of OneDC
* Latent compression module. A learned compression framework, encoding spatial
features and hyperprior side information for compact transmission.
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One-Step Diffusion
Generator

* One-step diffusion generator. A diffusion U-Net that reconstructs images from
compressed latents in a single denoising step.

* Hyperprior-based conditioning. The hyperprior feature replaces text embeddings
to provide spatial semantic guidance via cross-attention layers in the U-Net.

* Asillustrated in Fig.2, the hyperprior provide more accurate description than text.
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Stage I: Pixel-domain Compression Learning Stage ll: Hybrid-domain Perceptual Learning

Figure 4: Training pipeline of OneDC
¢ Training strategies:

Two-stage optimization.

e Stage I: Train the compression module and adapt the U-Net for the one-step
image reconstruction task.

e Stage ll: Fine-tune the one-step diffusion U-Net to enhance perceptual realism.
Semantic distillation of hyperprior (Stage |).

e Distill semantic priors from a pretrained VQ-tokenizer into the hyperprior codec,
enriching its representation and guidance accuracy.

 Asshown in Fig.2, hyperprior + semantic distillation further improves fidelity.

LstageI - Lrecon + AR + aLauaca
Iyt = VQ(Eaus(2)),

where Lrecon — Ll (xa 5%) + Lperceptual(xa 5%)

Lauar: - CE(Igt, Pau:z; (C))

Hybrid-domain supervision of one-step diffusion (Stage Il).

* Perform diffusion distillation in the latent domain, transferring generative priors
from a multi-step teacher to the one-step student.

 Combine with pixel-domain supervision to maintain reconstruction fidelity.

LstageII — Ldistill + ﬂLrecon + 'YLadva where:

Lgistin = H:‘:t,gj{5 [Efake (:%7 t) — €real (?%7 t)]7 Logy = Et,g’j{t [_Disc(ffake(g£7 t)a t)]

NEURAL INFORMATION

Naifu Xue'l, Zhaoyang Jia?, Jiahao Li®, Bin Li3, Yuan Zhang', Yan Lu’ PROCESSING SYSTEMS
'Communication University of China, 2University of Science and Technology of China, 3Microsoft Research Asia Y

Experiment

= Qualitative Evaluation: OneDC delivers best visual with lowest bpp.
Original

PerCo (SD) DiffEIC DiffC

OneDC (Ours)

53.61(109.4 x) 71.01 (144.9 x) 0.49(1.0 %)

Dec. Time (s) { 18.41(37.6 X)
LPIPS ! 0.271 (1.7 x) 0.236 (1.5 x) 0.235 (1.5 x) 0.156 (1.0 x)
Bpp ! 0.032 (2.3 x) 0.028 (2.0 x) 0.014 (1.0 x) 0.014 (1.0 x)
Orlglnal MS- ILLM PerCo (SD) DiffEIC DiffC OneDC (Ours)

Bpp ! /LPIPS{ 0.010/0.297 0.032/0.319 0.0157/0.367 0.013/0.263 0.009/0.197

hl Quantitative Evaluation: OneDC achieves SOTA RD performance.
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Ablation studies validate the effectiveness of the
hyperprior guidance and Hybrid-domain training.

Table 1: Ablation studies with BD-Rate (%) J.

Complexity analysis validate OneDC is much faster than all
multi-step diffusion codecs while preserving high quality.

Table 2: Comparison of coding time and BD-Rate (%) .

: CLIC2020 Times (s) MS-COCO 30K

Settings Methods

DISTS FID Enc. Dec. LPIPS DISTS FID
Semantic guidance VAE-based
No guidance 44.0 45.1 MS-ILLM 0.14 0.17  138.3 253.0 4784
Text guidance 242 363 ‘ —
Hyperprior guidance 20.7 243 M.” Iti-step diffusion
Hyperprior + Sem. Distil.— Ours 0.00 0.00 DiffEIC 0.32 12.4 305.0 239.1  341.0
; — PerCo (SD) 0.58 8.80 538.8 3458 59.6
L0SS variation .

DiffC 39~15.6 6.9~10.8 234.0 196.1 690.9

Pixel-domain only 114 51.8 :
Latent-domain only 60.7 37.1 One-step diffusion
Hybrid-domain — Ours 0.00 0.00 OneDC — Ours 0.15 0.34 0.00 0.00 0.00




