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Introduction Method Experiment
🙌Motivation:
Weakness of existing image codecs at low bitrates.
• Traditional / MSE-optimized codecs produce blurry textures.
• VAE-based generative codecs improve sharpness yet often introduce artifacts.
• Diffusion-based generative codecs raise perceptual realism, but they:
• (i) occasionally generate content that deviates from the original;
• (ii) Iterative sampling process leads to substantial computational overhead.

💡 Idea:
A carefully designed one-step diffusion is sufficient for image coding.

In this work, we:
• Use one-step diffusion as the generator in the image codec.
• Replace textual guidance with hyperprior-based condi2oning.
• Enhance the guidance accuracy of the hyperprior through seman2c dis2lla2on.
• Adopt pixel–latent hybrid supervision to improve reconstrucJon quality.
👉 Finally achieving SOTA RD performance with fast decoding!

🔍 Observa0on:
MulI-step sampling may not necessary for compression.
• In diffusion models, early steps generate coarse structure, while later steps

progressively refine high-frequency details.
• An image codec already transmits most low-frequency content through its latent

representaJon, the decoder only need to synthesize fine details.
• Besides, mulJ-step diffusion prohibits direct pixel-domain supervision.
Textual condiIoning in diffusion models is subopImal for compression.
• CapJon generaJon depends on heavy vision–language models.
• Text prompts are coarse and non-spaJal, unable to describe fine local details.

🖼Qualita've Evalua'on: OneDC delivers best visual with lowest bpp.

📊Quan'ta've Evalua'on: OneDC achieves SOTA RD performance.

Ablation studies validate the effectiveness of the
hyperprior guidance and Hybrid-domain training.

Complexity analysis validate OneDC is much faster than all
mul;-step diffusion codecs while preserving high quality.

😎 Our Solu(on:  OneDC (One-step Diffusion based Image Compression)

🛠 Key components:
• Latent compression module. A learned compression framework, encoding spatial

features and hyperprior side information for compact transmission.
• One-step diffusion generator. A diffusion U-Net that reconstructs images from

compressed latents in a single denoising step.
• Hyperprior-based conditioning. The hyperprior feature replaces text embeddings

to provide spatial semantic guidance via cross-attention layers in the U-Net.
• As illustrated in Fig.2, the hyperprior provide more accurate description than text.

Figure 3: Framework of OneDC

Figure 4: Training pipeline of OneDC

🚀 Training strategies:
Two-stage opImizaIon.
• Stage I: Train the compression module and adapt the U-Net for the one-step

image reconstrucJon task.
• Stage II: Fine-tune the one-step diffusion U-Net to enhance perceptual realism.
SemanIc disIllaIon of hyperprior (Stage I).
• DisJll semanJc priors from a pretrained VQ-tokenizer into the hyperprior codec,

enriching its representaJon and guidance accuracy.
• As shown in Fig.2, hyperprior + semanEc disEllaEon further improves fidelity.

Hybrid-domain supervision of one-step diffusion (Stage II).
• Perform diffusion disJllaJon in the latent domain, transferring generaJve priors

from a mulJ-step teacher to the one-step student.
• Combine with pixel-domain supervision to maintain reconstrucJon fidelity.

Figure 1: Multi-step diffusion v.s. one-step diffusion

Figure 2: ReconstrucEon examples of different semanEc guidance


